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1. Introduction

In their original formulation string theories were defined as perturbative expansions in the

string coupling constant gs that reproduce the corresponding perturbative field theoretical

expressions in the zero-slope limit (α′ → 0). For a long time it seemed very difficult,

or even impossible, to reproduce in string theory the non-perturbative effects that were

instead known from field theory, such as for example instanton effects.

A first important step in this direction was performed in ref. [1], but it was only after

the discovery of string dualities and M theory that a real progress could be achieved. In fact,

by exploiting string dualities it became clear that perturbative phenomena in one theory

often correspond to non-perturbative ones in the dual theory and vice-versa, and that the

dependence on the string coupling constant of these non-perturbative effects is of the same

type produced by instantons in field theory [2]. Non-perturbative phenomena of this kind

were discovered both in type II theories [3 – 5] and in the framework of Heterotic/Type I

duality [6].
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These developments opened the way to a more systematic analysis of instanton effects

in string theory [7, 8]. Among the stringy non-perturbative configurations, the so-called D-

instantons, i.e. the D(–1) branes of type IIB, were the mostly studied ones at the beginning

and, after the discovery of the AdS/CFT correspondence, they were intensively used to get

additional evidence of the equivalence between N = 4 super Yang-Mills theory (SYM) in

four dimensions and type IIB string theory on AdS5 × S5 [9]–[13].

These results were largely based on the fact that the instanton sectors of N = 4

SYM theory can be described in string theory by systems of D3 and D(–1) branes (or

D-instantons) [14, 15, 8]. In fact, the excitations of the open strings stretching between

two D(–1) branes, or between a D3 brane and a D-instanton, are in one-to-one correspon-

dence with the moduli of the SYM instantons in the so-called ADHM construction (for

comprehensive reviews on the subject see, for example, refs. [16, 17]). This observation can

be further substantiated [18] by showing that the tree-level string scattering amplitudes on

disks with mixed boundary conditions for a D3/D(–1) system lead, in the α′ → 0 limit,

to the effective action on the instanton moduli space of the SYM theory. Moreover, it

can be proved [18] that the same disk diagrams also yield the classical profile of the gauge

instanton solution, in close analogy with the procedure that generates the profile of the

classical supergravity D brane solutions from boundary states [19].

This approach can be easily adapted to describe gauge instantons in SYM theories with

reduced supersymmetry by placing the D3/D(–1) systems at suitable orbifold singularities.

It is also possible to take into account the deformations induced by non-trivial gravitational

backgrounds both of NS-NS and R-R type [20 – 22]. For instance, by studying a D3/D(–1)

system in an N = 2 orbifold and in the presence of a graviphoton background it is possible

to systematically obtain the instanton induced gravitational corrections to the N = 2

low-energy effective SYM action using perturbative string methods [22].

More recently, the string description of instantons has lead to new developments that

have received a lot of attention. In fact it has been shown in several different contexts

[23]–[37] that the stringy instantons may dynamically generate new types of superpotential

terms in the low-energy effective action of the SYM theory. These new types of F-terms

may have very interesting phenomenological implications, most notably they can provide

a mechanism for generating Majorana masses for neutrinos [24, 25] in some semi-realistic

string extensions of the Standard Model.

However, one of the problems that one has to face in this approach is that a super-

potential term must be holomorphic in the appropriate field theory variables, but what

is holomorphic in string theory is not quite the same of what is holomorphic in super-

gravity. If we limit ourselves to a toroidal compactification of string theory of the type

R
1,3×T (1)

2 ×T (2)
2 ×T (3)

2 , the holomorphic quantities that naturally appear are the complex

structures and the Kähler structures of the three tori, together with the ten-dimensional

axion-dilaton field. On the other hand, when we incorporate the results of the string com-

pactification in a four-dimensional supergravity Lagrangian, the appropriate fields to be

used are different from those mentioned above and are obtained from these by forming

specific combinations with various R-R fields (see, for instance, ref. [38] for a review).

Only when written in terms of these supergravity variables, the F-terms have the correct
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holomorphic structure and the tree-level SYM coupling constant is the sum of a holomor-

phic and an anti-holomorphic quantity as required by supersymmetry. When 1-loop effects

are included, some non-holomorphic terms appear due to the presence of massless modes

which require an IR regularization procedure, but they turn out to precisely reconstruct the

Kähler metrics of the various low-energy fields [39, 40],1 so that they can be re-absorbed

with field redefinitions.

A similar pattern should occur also for the non-perturbative F-terms induced by instan-

tons in string models. While the holomorphic dependence of these instanton contributions

from the complex quantities of the low-energy theory is a consequence of the cohomology

properties of the integration measure on the instanton moduli space [48, 16, 22], the holo-

morphic dependence on the compactification moduli is not at all obvious. This problem

has started to be analyzed only recently in the framework of intersecting brane worlds in

type IIA string theory [33].

In this paper we consider instead a toroidal orbifold compactification of type IIB string

theory in R
1,3× T

(1)
2 ×T

(2)
2

Z2
×T (3)

2 and study systems of fractional D9 branes that are wrapped

and magnetized on the three tori in such a way to engineer a N = 2 SYM theory with

NF flavors. In particular we distinguish the color D9 branes, which support the degrees

of freedom of the gauge multiplet, and the flavor D9 branes, which instead give rise to

hyper-multiplets in the fundamental representation. To study instanton effects in this set-

up, we add a stack of Euclidean D5 branes (E5 branes for short) that completely wrap the

internal manifold and hence describe point-like configurations from the four-dimensional

point of view.2 If the wrapping numbers and magnetization of these E5 branes are the

same as those of the color D9 branes, we have a stringy realization of ordinary gauge

theory instantons; if instead the internal structure of the wrapped E5 branes differs from

that of the color branes, then we have exotic instanton configurations of truly stringy

nature. In this paper we will consider the first case, but in principle our results can

be useful also to study the exotic cases. The physical excitations corresponding to open

strings with at least one end-point on the E5 branes describe the instanton moduli, and

their mutual interactions, as well as their couplings with the gauge and matter fields,

can be explicitly obtained from the α′ → 0 limit of disk diagrams with mixed boundary

conditions, in complete analogy with the N = 2 system studied in ref. [22] in a non-

compact orbifold. In our case, however, we have to take into account also the contribution

of the compact internal space, and in particular of its complex and Kähler structure moduli

which explicitly appear in the 1-loop amplitudes corresponding to annulus diagrams with

one boundary on the instantonic E5 branes and the other on the D9 branes. We show with

very general arguments that in supersymmetric gauge theories these annulus diagrams with

mixed boundary conditions describe precisely the 1-loop correction to the gauge coupling

constant, in agreement with some recent observations [26, 27]. Besides the usual logarithmic

terms that are responsible for the running of the coupling constant, these 1-loop corrections

in general contain also some finite terms that are interpreted as threshold effects [39,

1See also refs. [41]–[47].
2These D9/E5 systems are essentially a T-dual version of the D3/D(–1) systems mentioned above.
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49]. While in the non-compact orbifolds these thresholds are absent [50 – 52], in the non-

compact case they give, instead, a relevant contribution and actually produce crucial non-

holomorphic terms that precisely reconstruct the appropriate Kähler metric factors which

compensate those arising in the transformation from the string to the supergravity basis.

In this way one can explicitly prove that the instanton induced low-energy effective action,

when written in the supergravity variables, has the correct holomorphic properties, as

required by supersymmetry.

The paper is organized as follows. In section 2 we review how to engineer N = 2

SYM theories with flavors using wrapped magnetized D9 branes in a toroidal orbifold

compactification of type II string theory and discuss the relation between the string basis

and the supergravity basis which allows to determine the form of the Kähler metric for the

various scalar fields of the model. In section 3 we describe the instanton calculus in string

theory and discuss how to obtain the instanton induced contributions to the low-energy

effective action from disk amplitudes. We also show how the 1-loop annulus amplitudes

enter in the calculation. Section 4 is devoted to perform the explicit computation of these

annulus amplitudes and to explain their rôle in the instanton calculus. In section 5 we

show that the non-perturbative effective actions generated by the E5 branes have the

correct holomorphic structure required by supersymmetry for Wilsonian actions, if the

appropriate variables of the supergravity basis are used. Finally in section 6 we present

our conclusions and in the appendix we provide some technical details for the integral

appearing in the annulus amplitudes.

2. N = 2 models from magnetized branes

In this section we review how to obtain gauge theories with N = 2 supersymmetry from

systems of magnetized D9 branes in a toroidal orbifold compactification of Type IIB string

theory.

To set our notations, let us first give some details on the background geometry. We

take the space-time to be the product of R
1,3 times a six-dimensional factorized torus

T6 = T (1)
2 × T (2)

2 × T (3)
2 . For each torus T (i)

2 , the string frame metric and the B-field are

parameterized by the Kähler and complex structure moduli, respectively T (i) = T
(i)
1 +iT

(i)
2

and U (i) = U
(i)
1 + iU

(i)
2 , according to

G(i) =
T

(i)
2

U
(i)
2

(
1 U

(i)
1

U
(i)
1 |U (i)|2

)
and B(i) =

(
0 −T

(i)
1

T
(i)
1 0

)
. (2.1)

In our conventions, the dimensionful volume of the i-th torus is (2π
√

α′)2T
(i)
2 . This

toroidal geometry breaks SO(1, 9) into SO(1, 3)×∏
i U(1)(i), and correspondingly the ten-

dimensional string coordinates XM and ψM are split as

XM → (Xµ, Zi) and ψM → (ψµ,Ψi) (2.2)
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where µ = 0, 1, 2, 3 and3

Zi =

√√√√ T
(i)
2

2U
(i)
2

(
X2i+2 + U (i)X2i+3

)
, Ψi =

√√√√ T
(i)
2

2U
(i)
2

(
ψ2i+2 + U (i)ψ2i+3

)
(2.3)

for i = 1, 2, 3. Similarly, the (anti-chiral)4 spin-fields SȦ of the RNS formalism in ten

dimensions factorize in a product of four-dimensional and internal spin-fields according to

SȦ → (SαS−−−, SαS−++, SαS+−+, SαS++−, Sα̇S+++, Sα̇S+−−, Sα̇S−+−, Sα̇S−−+)

(2.4)

where the index α (α̇) denotes positive (negative) chirality in R
1,3 and the labels (±,±,±)

on the internal spin-fields denote charges (±1
2 ,±1

2 ,±1
2) under the three internal U(1)’s.

Without loss of generality, we set the B-field to zero (at the end of this section we

will see how to incorporate it). The above geometry can also be described in the so-

called supergravity basis using the complex moduli s, t(i) and u(i), whose relation with the

previously introduced quantities in the string basis is (see for instance ref. [53, 38])

Im(s) ≡ s2 =
1

4π
e−φ10 T

(1)
2 T

(2)
2 T

(3)
2 ,

Im(t(i)) ≡ t
(i)
2 = e−φ10T

(i)
2 ,

u(i) = u
(i)
1 + iu

(i)
2 = U (i) , (2.5)

where φ10 is the ten dimensional dilaton. The real parts of s and t(i) are related to suitable

R-R potentials. In terms of these variables, the bulk Kähler potential in the N = 1

language5 is given by [54]

K = − log(s2) −
3∑

i=1

log(t
(i)
2 ) −

3∑

i=1

log(u
(i)
2 ) . (2.6)

2.1 The gauge sector

In the above toroidal background we now introduce a stack of Na D9 branes. The open

string excitations that are massless in R
1,3 describe a Super Yang-Mills (SYM) theory with

gauge group U(Na) and N = 4 supersymmetry in four dimensions. In order to reduce to

N = 2, we replace T6 with the toroidal orbifold

T (1)
2 × T (2)

2

Z2
× T (3)

2 , (2.7)

3The prefactors in (2.3) are chosen in such a way that the complex coordinates are orthonormal in the

metric (2.1).
4We define the 10-dimensional GSO projection so that in the Ramond zero-mode sector it selects anti-

chiral states; in other words, in this sector we take (−1)F to be given by minus the chirality matrix Γ11.
5Strictly speaking this Kähler potential is not globally defined since the scalars of the hypermultiplets

T (1), T (2) and U (1), U (2) live in a quaternionic manifold, which is not Kähler since its holonomy group is

not contained in U(n). The quaternionic manifold of N = 2 supergravity becomes an hyperKähler manifold

of N = 2 rigid supersymmetry in the limit where the gravitational interaction is switched off: the Kähler

potential we use in this work has therefore to be interpreted as the expression one obtains in the rigid limit

or as a local expression.
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where Z2 simply acts as a reflection in the first two tori (i.e. Zi → −Zi for i = 1, 2), and

consider fractional D9 branes instead of bulk branes.6 Actually, in the orbifold (2.7) there

are two types of fractional branes corresponding to the two irreducible representations of

Z2 that can be assigned to the open string Chan-Paton factors. For simplicity, we take all

the Na D9 branes to be fractional branes of the same kind (for example with the trivial

representation on the Chan-Paton factors) and we will call them color branes. Then, one

can easily see that the physical massless open string states surviving the orbifold projection

are a vector Aµ, a complex scalar φ and two gaugini Λα1 and Λα2. They are described by

the following vertex operators

VA(z) = (πα′)
1
2 Aµ ψµ(z) e−ϕ(z) eipµXµ(z) , (2.8a)

Vφ(z) = (πα′)
1
2 φΨ3(z) e−ϕ(z) eipµXµ(z) (2.8b)

in the (–1) superghost picture of the NS sector, and

VΛ1(z) = (2πα′)
3
4 Λα1 Sα(z)S+−+(z) e−

1
2
ϕ(z) eipµXµ(z) , (2.9a)

VΛ2(z) = (2πα′)
3
4 Λα2 Sα(z)S−++(z) e−

1
2
ϕ(z) eipµXµ(z) (2.9b)

in the (–1/2) superghost picture of the R sector. We have defined the action of the Z2

orbifold generator h on the R ground states to be

h = −σ3 ⊗ σ3 ⊗ 1 , (2.10)

which is the spinor representation of a π rotation in the first two tori. Then, one can easily

see that the two internal spin fields in the fermionic vertices (2.9) have h-parity one and

are selected by the orbifold projection

Porb =
1 + h

2
. (2.11)

In all vertices (2.8) and (2.9), the polarizations have canonical dimensions (this explains

the dimensional prefactors 7) and are Na × Na matrices transforming in the adjoint rep-

resentation of SU(Na) (here we neglect an overall factor of U(1), associated to the center

of mass of the Na D9 branes, which decouples and does not play any rôle in our present

context). The vertex operators (2.8) and (2.9) describe the components of a N = 2 vector

superfield and are connected to each other by the following supercharges:

Qα1 =

∮
dz

2πi
Sα(z)S−++(z) e−

1
2
ϕ(z) , Qα2 =

∮
dz

2πi
Sα(z)S+−+(z) e−

1
2
ϕ(z) ,

Q̄α̇1 =

∮
dz

2πi
Sα̇(z)S+−−(z) e−

1
2
ϕ(z) , Q̄α̇2 =

∮
dz

2πi
Sα̇(z)S−+−(z) e−

1
2
ϕ(z) ,

(2.12)

which generate the N = 2 supersymmetry algebra selected by the orbifold projection (2.11).

6The twisted closed string sectors introduced by the orbifold will not play any rôle for our considerations,

and thus it is enough to still consider only the untwisted moduli (2.5).
7See for example ref. [18] for details on the normalizations of vertex operators and scattering amplitudes.
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By computing all tree-level scattering amplitudes among the vertex operators (2.8)

and (2.9) and their conjugates, and taking the field theory limit α′ → 0, one can obtain

the N = 2 SYM action

SSYM =
1

g2
a

∫
d4x Tr

{1

2
F 2

µν + 2Dµφ̄Dµφ − 2 Λ̄α̇AD̄/ α̇βΛA
β

+ i
√

2 Λ̄α̇AǫAB
[
φ, Λ̄α̇

B

]
+ i

√
2 ΛαAǫAB

[
φ̄,ΛB

α

]
+

[
φ, φ̄

]2
}

,

(2.13)

where A,B = 1, 2, and the Yang-Mills coupling constant ga is given by

1

g2
a

=
1

4π
e−φ10 T

(1)
2 T

(2)
2 T

(3)
2 = s2 . (2.14)

Since we will study instanton effects, we have written the above action with Euclidean

signature.

For later convenience it is useful to compare the bosonic part of the action (2.13) with

the Dirac-Born-Infeld (DBI) action for D9 branes in the toroidal orbifold (2.7). In the

Euclidean string frame, this action is given by

SDBI =
2π

(2π
√

α′)10

∫
d10x e−φ10

√
det

(
GMN + 2πα′FMN

)
, (2.15)

where GMN is the world-volume metric and FMN is a gauge field strength. Promoting

the latter to be non-abelian,8 and compactifying SDBI to four dimensions on the toroidal

orbifold (2.7), the quadratic terms in F read (see also refs. [55, 52])

∫
d4x

√
det G4 Tr

{
1

2g2
a

F 2
µν + 2e−φ10

3∏

i=1

√
det G(i)

1

T
(3)
2 U

(3)
2

DµΦ̄DµΦ

}
, (2.16)

where G4 is the string frame metric in the non-compact space and

Φ =
1√
4π

(
U (3)A8 − A9

)
(2.17)

with A8 and A9 denoting the components of the ten-dimensional gauge field along T (3)
2 .

Changing to the (flat) Euclidean Einstein frame with

(G4)µν = e2φ4 δµν , (2.18)

where φ4 = φ10 − 1
2

∑
i log(T

(i)
2 ) is the four-dimensional dilaton, and using the geometrical

moduli (2.5) of the supergravity basis, we can rewrite (2.16) as

∫
d4xTr

{
1

2g2
a

F 2
µν + 2KΦ DµΦ̄DµΦ

}
, (2.19)

where we have introduced the Kähler metric for Φ, namely

KΦ =
1

t
(3)
2 u

(3)
2

. (2.20)

8We normalize the generators TA of the gauge group such that Tr (TATB) = 1
2
δAB .

– 7 –



J
H
E
P
1
0
(
2
0
0
7
)
0
9
1

This Kähler metric can be obtained directly also from a 3-point scattering amplitude in-

volving one of the (closed string) geometric moduli and two scalar fields, as explained for

example in refs. [56, 53], after appropriate changes from the string to the supergravity

basis.

Comparing (2.19) with the bosonic kinetic terms in (2.13), we see that the relation

between the canonically normalized field φ appearing in the string vertex operators and

the field Φ in the supergravity basis is

φ = ga

√
KΦ Φ . (2.21)

2.2 The matter sector

We now want to add N = 2 hyper-multiplets in this orbifold set up. The simplest possibility

to do this is to add a second stack of fractional D9 branes (flavor branes) which carry a

different representation of the orbifold group as compared to the color branes considered

so far. The massless open strings stretching between the flavor branes and the color branes

account precisely for N = 2 hyper-multiplets in the fundamental representation of the

gauge group SU(Na). However, we can be more general than this and introduce magnetized

flavor D9 branes. To distinguish them from the color branes, we will denote their various

parameters with a subscript b. For example, Nb will be their number and n
(i)
b will be their

wrapping number around the i-th torus.

Introducing a magnetic flux on the i-th torus for the flavor branes amounts to pick the

U(1) generator of the Cartan subalgebra of U(n
(i)
b ) whose trace is non-zero and turn on a

constant magnetic field9 F
(i)
b , namely

F
(i)
b = f

(i)
b dX2i+2 ∧ dX2i+3 = i

f
(i)
b

T
(i)
2

dZi ∧ dZ̄i =
f

(i)
b√
G(i)

J (i) , (2.22)

where in the last step we have introduced the Kähler form J (i). The generalized Dirac

quantization condition requires that the first Chern class c1(F
(i)
b ) be an integer, namely

c1(F
(i)
b ) =

1

2π

∫

T
(i)
2

Tr(F
(i)
b ) =

1

2π
(2π

√
α′)2n

(i)
b f

(i)
b = m

(i)
b ∈ Z , (2.23)

that is

2πα′f
(i)
b =

m
(i)
b

n
(i)
b

. (2.24)

The total magnetic field is then Fb = F
(1)
b +F

(2)
b +F

(3)
b . In order to preserve at least N = 1

supersymmetry in the bulk, the magnetic field has to satisfy the relation

J ∧ J ∧ F̂b =
1

3
F̂b ∧ F̂b ∧ F̂b , (2.25)

9Even if more general magnetizations could be introduced, for simplicity we will consider only “diagonal”

magnetic fields which respect the factorized structure of the internal toroidal space.
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where F̂b = 2πα′Fb and J is the total Kähler form J =
∑

i J
(i). Setting

2πα′ f
(i)
b

T
(i)
2

= tan πν
(i)
b with 0 ≤ ν

(i)
b < 1 , (2.26)

it is easy to see that the supersymmetry requirement (2.25) is fulfilled if10

ν
(1)
b − ν

(2)
b − ν

(3)
b = 0 . (2.27)

If we want to have the same N = 2 supersymmetry which is realized by the orbifold (2.7),

we have to set

ν
(3)
b = 0 and hence ν

(1)
b = ν

(2)
b . (2.28)

This implies that the open strings stretching between the flavor branes and the color branes

(i.e. the D9b/D9a strings) are twisted only along the directions of the first two tori. More

specifically, the internal string coordinates Zi and Ψi defined in (2.3) satisfy, for i = 1, 2,

the following twisted monodromy properties

Zi
(
e2πiz

)
= e2πiν

(i)
b Zi(z) and Ψi

(
e2πiz

)
= η e2πiν

(i)
b Ψi(z) , (2.29)

where η = +1 for the NS sector and η = −1 for the R sector. On the other hand, Z3 and

Ψ3 have the usual untwisted properties.

Let us now describe the physical massless states of the D9b/D9a strings, starting from

the NS sector. To write the vertex operators it is convenient to introduce the following

notation

σ(z) ≡
2∏

i=1

σ
ν
(i)
b

(z) , s(z) ≡
2∏

i=1

S
ν
(i)
b

, (2.30)

where σ
ν
(i)
b

and S
ν
(i)
b

are respectively the bosonic and fermionic twist fields in the i-th torus

whose conformal dimensions are

h(i)
σ =

1

2
ν

(i)
b

(
1 − ν

(i)
b

)
and h

(i)
S =

1

2

(
ν

(i)
b

)2
. (2.31)

Then, the physical massless states are described by the following vertex operators:

Vq(z) = (2πα′)
1
2 q σ(z) :Ψ̄1(z)s(z) : e−ϕ(z) eipµXµ(z) ,

Vq̃†(z) = (2πα′)
1
2 q̃† σ(z) :Ψ̄2(z)s(z) : e−ϕ(z) eipµXµ(z) ,

(2.32)

which can be easily checked to have conformal dimension 1 for p2 = 0 if ν
(1)
b = ν

(2)
b .

In the R sector instead the massless states are described by the following vertex oper-

ators
Vχ(z) = (2πα′)

3
4 χα Sα(z)σ(z)Σ(z)S−(z) e−

1
2
ϕ(z) eipµXµ(z) ,

Vχ̃†(z) = (2πα′)
3
4 χ̃†

α̇ Sα̇(z)σ(z)Σ(z)S+(z) e−
1
2
ϕ(z) eipµXµ(z) ,

(2.33)

10Other solutions of (2.25) are −ν
(1)
b − ν

(2)
b + ν

(3)
b = 0; −ν

(1)
b + ν

(2)
b − ν

(3)
b = 0; ν

(1)
b + ν

(2)
b + ν

(3)
b = 2.

They are all related to the solution (2.27) by obvious changes.
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where

Σ(z) =
2∏

i=1

S
ν
(i)
b

− 1
2

(z) (2.34)

and S± are the spin fields in the untwisted directions of the third torus. Again, one can

easily check that these vertex operators have conformal dimension 1 for p2 = 0.

In all the above vertices the polarizations, which carry a color index in the funda-

mental representation of SU(Na), have canonical dimensions and are odd under Z2, since

they describe open strings that connect fractional branes belonging to different irreducible

representations of the orbifold group. Consequently we must require that the operator part

in (2.32) and (2.33) be also odd under Z2 so that altogether the complete vertices can sur-

vive the orbifold projection. In particular this implies that the twisted part of the R ground

states, described by σ(z)Σ(z), must be declared odd under Z2 while the twisted part of

the NS ground states, described by σ(z)s(z), must be declared even. The vertices (2.32)

and (2.33) are connected to each other by the same eight supercharges (2.12) that are

selected by the Z2 orbifold, and thus their polarizations form a hyper-multiplet represen-

tation of N = 2 supersymmetry. More precisely, taking into account the multiplicity of

the (a, b) intersection, they can be organized into NF hyper-multiplets whose components

in the following will be denoted as
(
qf , q̃†f , χf , χ̃†

f

)
with f = 1, . . . ,NF .

The D9a/D9b strings with opposite orientation have a completely similar structure; at

the massless level the physical vertex operators are

Vq†(z) = (2πα′)
1
2 q† σ̄(z) :Ψ1(z)s̄(z) : e−ϕ(z) eipµXµ(z) ,

Vq̃(z) = (2πα′)
1
2 q̃ σ̄(z) :Ψ2(z)s̄(z) : e−ϕ(z) eipµXµ(z)

(2.35)

in the NS sector, and

Vχ†(z) = (2πα′)
3
4 χ†

α̇ Sα̇(z) σ̄(z)Σ̄(z)S+(z) e−
1
2
ϕ(z) eipµXµ(z) ,

Vχ̃(z) = (2πα′)
3
4 χ̃α Sα(z) σ̄(z)Σ̄(z)S−(z) e−

1
2
ϕ(z) eipµXµ(z)

(2.36)

in the R sector. Here we have defined the anti-twist fields as follows:

σ̄(z) ≡
2∏

i=1

σ
1−ν

(i)
b

(z) , s̄(z) ≡
2∏

i=1

S
−ν

(i)
b

(z) , Σ̄(z) ≡
2∏

i=1

S 1
2
−ν

(i)
b

(z) . (2.37)

The vertices (2.35) and (2.36) are conjugate to the ones in (2.32) and (2.33) respectively.

By computing all tree-level scattering amplitudes among the above vertex operators

and those of gauge sector, and taking the field theory limit α′ → 0, one can obtain the

N = 2 action for hyper-multiplets coupled to a vector multiplet. For example, from the

computation of a 3-point function between a gluon, a scalar of the hyper-multiplet and its

conjugate, one can reconstruct the kinetic terms

∫
d4x

NF∑

f=1

{
Dµq†

f
Dµqf + Dµq̃f Dµq̃†f

}
, (2.38)
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where we have explicitly indicated the sum over the flavor indices and suppressed the

color indices. Similarly, from other 3-point functions one can obtain the various Yukawa

interactions, like for example
∫

d4x

NF∑

f=1

χ̃f φχf . (2.39)

In the supergravity basis it is customary to use fields with a different normalization

and write for example the kinetic term for the scalars of the hyper-multiplet as

∫
d4x

NF∑

f=1

KQ

{
DµQ†f DµQf + DµQ̃f DµQ̃†

f

}
. (2.40)

Upon comparison with (2.38), we see that the relation between the canonically normalized

fields q and q̃ appearing in the string vertex operators and the fields Q and Q̃ of the

supergravity basis is

q =
√

KQ Q and q̃ =
√

KQ Q̃ . (2.41)

On the other hand, using a N = 1 language in the supergravity basis, the various Yukawa

couplings can be encoded in the holomorphic superpotential

W =

NF∑

f=1

Q̃f Φ Qf , (2.42)

where we have adopted for the chiral superfields the same notation used for their bosonic

components.

By explicitly writing the relation between the Yukawa couplings in the canonical basis

(see e.g. (2.39)) and those in the supergravity basis derived from the N = 1 superpoten-

tial (2.42), we obtain

1 = eK/2
(√

KQ

)−2 (
ga

√
KΦ

)−1
, (2.43)

where the factor eK/2 is the contribution of the bulk supergravity Kähler potential. Clearly,

we can rewrite (2.43) also as

eK/2 K−1
Q = ga

√
KΦ , (2.44)

which will be useful later.11 Using (2.14), the expression for the Kähler potential K given

in (2.6) and the Kähler metric KΦ given in (2.20), we deduce that

KQ =
1

(
t
(1)
2 t

(2)
2 u

(1)
2 u

(2)
2

)1/2
. (2.45)

This expression for KQ agrees with the one mentioned in ref. [33]. It is worth pointing out

that also the metric (2.45) can be reconstructed from a 3-point scattering amplitude along

the lines discussed in refs. [56, 53], after the appropriate changes between the string and

the supergravity basis are taken into account.

11In section 6 we will rewrite this relation in a full fledged N = 2 notation (see eq. (6.7)).
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In the following we will consider also the case in which the hyper-multiplets are massive

with a N = 2 invariant mass term given by

WM =

NF∑

f=1

Mf Q̃f Qf . (2.46)

From this superpotential we immediately see that the corresponding mass parameters mf

appearing in the canonically normalized action of the string basis are

mf = eK/2 K−1
Q Mf = ga

√
KΦ Mf , (2.47)

where in the last step we have used (2.44). Comparing this expression with (2.21), we see

that mf and φ are related to the corresponding quantities Mf and Φ in the supergravity

basis in the same way.

2.3 Generalizations

The above construction can be easily generalized in several ways. For example, if a back-

ground B field is turned on in the internal space, see (2.1), the magnetic flux 2πα′f
(i)
b gets

replaced by f̂
(i)
b ≡ 2πα′f

(i)
b − T

(i)
1 , so that (2.26) becomes

tan πν
(i)
b =

m
(i)
b − n

(i)
b T

(i)
1

n
(i)
b T

(i)
2

, (2.48)

where the quantization condition (2.24) has been taken into account. Note that in the

presence of B also the color branes acquire intrinsic twist parameters given by

tan πν(i)
a = −T

(i)
1

T
(i)
2

(2.49)

and the monodromy properties of the D9b/D9a strings depend on the relative twist param-

eters

ν
(i)
ba = ν

(i)
b − ν(i)

a (2.50)

which must replace ν
(i)
b in the various vertex operators like (2.32) and (2.33). We can further

generalize this by wrapping the color branes n
(i)
a times on the i-th torus and turning on a

magnetic field on their world volume with integer magnetic numbers m
(i)
a . In this way the

intrinsic twist parameters ν
(i)
a of the color branes have the same expression as (2.48) with

the subscript b replaced by a.

Non-trivial wrapping and magnetic numbers for the color branes also influence the

explicit expressions of the various quantities in the effective gauge theory. For example,

the gauge coupling constant ga turns out to be given by

1

g2
a

=
1

4π
e−φ10

3∏

i=1

∣∣n(i)
a T (i) − m(i)

a

∣∣ = s2

∣∣∣ℓ(1)
a ℓ(2)

a ℓ(3)
a

∣∣∣ , (2.51)
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where we have defined

ℓ(i)
a =

n
(i)
a T (i) − m

(i)
a

T
(i)
2

. (2.52)

Note that if we use the supersymmetry relation

∏

i

f̂
(i)
a

T
(i)
2

=
∑

i

f̂
(i)
a

T
(i)
2

(2.53)

for the quantities f̂
(i)
a ≡ 2πα′f

(i)
a −T

(i)
1 , which follows from the obvious extension of (2.25),

we can rewrite (2.51) as

1

g2
a

= n(1)
a n(2)

a n(3)
a

∣∣∣s2 −
1

4π

(
f̂ (1)

a f̂ (2)
a t

(3)
2 + f̂ (2)

a f̂ (3)
a t

(1)
2 + f̂ (3)

a f̂ (1)
a t

(2)
2

)∣∣∣ . (2.54)

By repeating the same analysis of the previous subsections when the color branes are

magnetized, one finds that the Kähler metric for the adjoint scalar field Φ is

KΦ =
1

t
(3)
2 u

(3)
2

∣∣∣∣∣
ℓ
(1)
a ℓ

(2)
a

ℓ
(3)
a

∣∣∣∣∣ (2.55)

and that the Kähler metric for the fundamental chiral multiplets Q and Q̃ is

KQ =
1

(
t
(1)
2 t

(2)
2 u

(1)
2 u

(2)
2

)1/2

∣∣∣ℓ(3)
a

∣∣∣ . (2.56)

These expressions reduce to those given respectively in (2.20) and (2.45) when the color

branes are not magnetized and are trivially wrapped on the internal space, since in this

case |ℓ(i)
a | → 1 for all i.

Performing a T-duality transformation

T (i) → − 1

U (i)
, U (i) → − 1

T (i)
(2.57)

with the four-dimensional dilaton φ4 kept fixed, we can translate our results for magne-

tized D9 branes into those for intersecting D6 branes of the type IIA theory. Under this

transformation, t
(i)
2 and u

(i)
2 are interchanged, while

ℓ(i)
a → − Ū (i)

U
(i)
2

(
n(i)

a + U (i)m(i)
a

)
. (2.58)

We can therefore see that, after T-duality, the Kähler metrics (2.55) and (2.56) are a

generalization of those presented in ref. [33] for intersecting D branes on rectangular tori

(i.e. U
(i)
1 = 0). Notice also that when all branes are magnetized, the number NF of

fundamental hyper-multiplets associated to the strings stretching between the D9b and the

D9a branes is given by

NF = Nb Iba = Nb Iab , (2.59)
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where

Iab =

2∏

i=1

(
m(i)

a n
(i)
b − m

(i)
b n(i)

a

)
= Iba (2.60)

represents the number of Landau levels for the (a, b) intersection.

We finally observe that in a generic toroidal orbifold compactification with wrapped

branes there are unphysical closed string tadpoles that must be canceled to have a glob-

ally consistent model. Usually this cancellation is achieved by introducing an orientifold

projection and suitable orientifold planes. Like in other cases treated in the literature, in

this paper we take a “local” point of view focusing only on some intersections and assume

that the model can be made fully consistent with the orientifold projection.

3. N = 2 instanton calculus from the string perspective

We now consider instanton effects in the N = 2 gauge theories presented in the previous

section. In this stringy set-up instanton contributions can be obtained by adding fractional

Euclidean D5 branes (nowadays called E5 branes) that completely wrap the internal mani-

fold
T

(1)
2 ×T

(2)
2

Z2
×T (3)

2 , and hence describe point-like configurations from the four-dimensional

point of view. In general these E5 branes can be chosen with a representation of the Z2

orbifold group on the Chan-Paton factors and/or with magnetic fluxes that are different

from the ones of the color D9a branes. If that is the case, then the E5 branes represent

“exotic” instantons whose properties are different from those of the ordinary gauge theory

instantons. Recently, these “exotic” configurations have been the subject of active inves-

tigations [24]–[36] from several different points of view. Here we start by considering E5

branes that have the same characteristics of the color D9a branes, except for their dimen-

sions. Therefore, we call them E5a branes. As we will see in detail later, these E5a branes

represent ordinary gauge instantons for the SYM theory on the D9a branes. However, they

are “exotic” instantons with respect to the gauge theory defined on the flavor D9b, and

thus our results can be useful also for the new developments.

The addition of k E5a branes introduces new types of excitations associated to open

strings with at least one end-point on the instantonic branes, namely the E5a/E5a strings,

the D9a/E5a (or E5a/D9a) strings and the D9b/E5a (or E5a/D9b) strings. In all these

instantonic sectors, due to the Dirichlet-Dirichlet or mixed Dirichlet-Neumann boundary

conditions in the four non-compact directions, the open string excitations do not carry any

momentum and hence represent moduli rather than dynamical fields in space-time. They

however can carry (discretized) momentum along the compact directions. Therefore we

can distinguish the open string states into those which do not carry any momentum in any

directions and those which do. The lightest excitations of the first type are truly instanton

moduli while those of the second type represent genuine string corrections whose relevance

for the effective theory will be elucidated in the following.

3.1 Instanton moduli

We now briefly list the instanton moduli for our N = 2 model which we distinguish into

neutral, charged and flavored ones.
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The neutral instanton sector. The neutral instanton sector comprises the zero-modes

of open strings with both ends on the E5a branes. These modes are usually referred to as

neutral because they do not transform under the gauge group. In the NS sector, after the

Z2 orbifold projection, we find six physical bosonic excitations that can be conveniently

organized in a vector aµ and a complex scalar χ, and also three auxiliary excitations Dc

(c = 1, 2, 3). The corresponding vertex operators are

Va(z) = g5a (2πα′)
1
2 aµ ψµ(z) e−ϕ(z) , (3.1a)

Vχ(z) = χ (πα′)
1
2 Ψ3(z) e−ϕ(z) , (3.1b)

VD(z) = Dc (πα′) η̄c
µν ψν(z)ψµ(z) , (3.1c)

where η̄c
µν are the three anti-self-dual ’t Hooft symbols and g5a is the (dimensionful) cou-

pling constant on the E5a, namely

g5a =
ga

4π2α′
(3.2)

with ga given in (2.51). In the R sector, after the orbifold projection (2.11), we find four

chiral fermionic zero-modes MαA described by the vertex operators

VM1(z) =
g5a√

2
(2πα′)

3
4 Mα1 Sα(z)S+−+(z) e−

1
2
ϕ(z) ,

VM2(z) =
g5a√

2
(2πα′)

3
4 Mα2 Sα(z)S−++(z) e−

1
2
ϕ(z) ,

(3.3)

and four anti-chiral zero-modes λα̇A, described by the vertices

Vλ1(z) = λα̇1 (2πα′)
3
4 Sα̇(z)S+−−(z) e−

1
2
ϕ(z) ,

Vλ2(z) = λα̇2 (2πα′)
3
4 Sα̇(z)S−+−(z) e−

1
2
ϕ(z) .

(3.4)

All polarizations in the vertex operators (3.1), (3.3) and (3.4) are k × k matrices and

transform in the adjoint representation of U(k). It is worth noticing that if the Yang-

Mills coupling constant ga is kept fixed when α′ → 0, then the dimensionful coupling g5a

in (3.2) blows up. Thus, some of the vertex operators have been rescaled with factors of g5a

(like in (3.1a) and (3.3)) in order to yield non-trivial interactions when α′ → 0 [18]. As a

consequence of this rescaling some of the moduli acquire unconventional scaling dimensions

which, however, are the right ones for their interpretation as parameters of an instanton

solution [16, 18]. For instance, the aµ’s have dimensions of (length) and are related to the

positions of the (multi-)centers of the instanton, while MαA have dimensions of (length)
1
2

and are the fermionic partners of the instanton centers. Furthermore, if we write the k× k

matrices aµ and MαA as

aµ = xµ
0 11k×k + yµ

c T c , MαA = θαA 11k×k + ζαA
c T c , (3.5)

where T c are the generators of SU(k), then the instanton center of mass, xµ
0 , and its

fermionic partners, θαA, can be identified respectively with the bosonic and fermionic

coordinates of the N = 2 superspace.
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The charged instanton sector. The charged instanton sector contains the zero-modes

of the open strings stretching between the color D9a branes and the E5a branes, which

transform in the fundamental representation of the gauge group. In the NS sector there

are two physical bosonic moduli wα̇ with dimension of (length) whose vertex operator is

Vw(z) =
g5a√

2
(2πα′)

1
2 wα̇ ∆(z)Sα̇(z) e−ϕ(z) . (3.6)

Here ∆ is the twist operator with conformal weight 1/4 which changes the boundary

conditions of the uncompact coordinates Xµ from Neumann to Dirichlet. In the R sector

there are two fermionic moduli µA with dimension of (length)1/2 whose vertices are

Vµ1(z) =
g5a√

2
(2πα′)

3
4 µ1 ∆(z)S+−+(z) e−

1
2
ϕ(z) ,

Vµ2(z) =
g5a√

2
(2πα′)

3
4 µ2 ∆(z)S−++(z) e−

1
2
ϕ(z) .

(3.7)

Both in (3.6) and (3.7) the polarizations are Na × k matrices which transform in the bi-

fundamental representation (Na, k̄) of U(Na) × U(k). Notice that these vertex operators

are even under the Z2 orbifold projection (2.11). The charged moduli associated to the open

strings stretching from the E5a branes to the D9a’s, denoted by w̄α̇ and µ̄A, transform in

the (N̄a, k) representation and are described by vertex operators of the same form as (3.6)

and (3.7) except for the replacement of ∆(z) by the anti-twist ∆̄(z), corresponding to mixed

Dirichlet-Neumann boundary conditions along the four space-time directions. It is worth

pointing out that µ̄A are not the conjugates of µA. This fact has important consequences

for our purposes, as we will discuss in section 4.

The flavored instanton sector. The flavored instanton sector corresponds to the open

strings that stretch between the flavor D9b branes and the E5a branes. In this case the

four non-compact directions have mixed Neumann-Dirichlet boundary conditions while the

complex coordinates along the first two tori are twisted with parameters ν
(1)
ba = ν

(2)
ba due

to the different magnetic fluxes at two end-points. As a consequence of this, there are no

bosonic physical zero-modes in the NS sector and the only physical excitations are fermionic

moduli with dimension of (length)
1
2 from the R sector, whose vertices are given by

Vµ′(z) =
g5a√

2
(2πα′)

3
4 µ′ ∆(z)σ(z)Σ(z)S−(z) e−

1
2
ϕ(z) . (3.8)

Notice that this vertex operator is even under the Z2 orbifold group, since both the operator

part and the polarization are odd under Z2, in complete analogy to what happens to the

fermionic vertices (2.36) of the flavored matter. Finally, we recall that the zero-modes for

the E5a/D9b open strings with opposite orientation are described by the vertex operators

Vµ̄′(z) =
g5a√

2
(2πα′)

3
4 µ̄′ ∆̄(z) σ̄(z)Σ̄(z)S−(z) e−

1
2
ϕ(z) . (3.9)

Taking into account the multiplicity of the (a, b) intersection, we will have altogether NF

fermionic moduli of each type which will be denoted as µ′
f and µ̄′f with f = 1, . . . ,NF .
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The physical moduli we have listed above, collectively called Mk, are in one-to-one

correspondence with the ADHM moduli of N = 2 gauge instantons (for a more detailed

discussion see, for instance, ref. [16] and references therein). In all instantonic sectors we

can construct many other open string states that carry a discretized momentum along

the compact directions and/or have some bosonic or fermionic string oscillators. All these

“massive” states, however, are not physical, i.e. they cannot be described by vertex opera-

tors of conformal dimension one, but, as we will see later, they can play a role as internal

states circulating in open string loop diagrams.

3.2 Instanton partition function

Having identified the ADHM moduli, in analogy with the instanton calculus in field theory

we define the k-instanton partition function as the “functional” integral over the instanton

moduli, namely

Zk = Ck

∫
dMk e−S(Mk) , (3.10)

where Ck is a dimensional normalization factor which compensates for the dimensions of

the integration measure dMk, and S(Mk) is the moduli effective action which accounts

for all possible interactions among the instanton moduli in the limit α′ → 0 (with ga fixed)

at any order of string perturbation theory. This action can be obtained by computing

the field theory limit of all scattering amplitudes with the vertex operators of the ADHM

moduli inserted on boundaries of open string world-sheets of any topology. Formally we

can write

−S(Mk) =
∑

topology

〈 1 〉topology + 〈Mk 〉topology

= 〈 1 〉disk + 〈 1 〉′annulus + · · · + 〈Mk 〉disk + 〈Mk 〉′annulus + · · · ,

(3.11)

where 〈 1 〉topology denotes the vacuum amplitudes and 〈Mk 〉topology the amplitudes with

moduli insertions. Since the functional integration over the ADHM moduli Mk is explicitly

performed in (3.10), to avoid double counting only the contribution of the “massive” string

excitations has to be taken into account in computing the higher order terms of S(Mk).

This is the reason of the ′ notation in the annulus contributions, which reminds that only

the “massive” instantonic string excitations must circulate in the loop.

In the semi-classical approximation, which is typical of the instanton calculus, it is

enough to consider the vacuum amplitudes up to one loop and the moduli interactions at

tree level since, as we will see momentarily,

〈 1 〉disk = O
(
g−2
a

)
, 〈 1 〉′annulus = O

(
g0
a

)
, 〈Mk 〉disk = O

(
g0
a

)
, (3.12)

while 〈Mk 〉annulus or the higher topology contributions are of higher order in the Yang-

Mills coupling constant. Thus, in this approximation the k-instanton partition function

is

Zk = Ck e〈 1 〉disk+〈 1 〉′annulus

∫
dMk e〈Mk 〉disk . (3.13)

Let us now discuss the various terms of this expression in turn.
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The dimensional factor Ck can be easily determined by counting the dimensions (mea-

sured in units of α′) of the various moduli Mk as given in the previous subsections, and

the result is

Ck =
(√

α′
)−(2Na−NF )k

. (3.14)

Notice the appearance of the 1-loop coefficient b1 = (2Na − NF ) of the β-function of the

N = 2 SYM theory.12

The vacuum amplitude at tree level 〈 1 〉disk is nothing but the topological normalization

of the a disk whose boundary lies on the k E5a branes, which is [1, 18]

〈 1 〉disk ≡ D5a = − 8π2

g2
a

k , (3.15)

where ga, given in (2.51), is interpreted as the Yang-Mills coupling constant at the string

scale
√

α′. Notice that the vacuum amplitude (3.15) is also minus the value of the classical

instanton action. Using these results we have

Ck e〈 1 〉disk = Λ(2Na−NF )k , (3.16)

where Λ is the renormalization group invariant scale of the N = 2 gauge theory on the color

branes. On the other hand these factors do not seem to have an obvious interpretation

in terms of the four-dimensional field theory living on the flavor branes for which the E5a

branes would represent “exotic” instantons of truly stringy nature.

The 1-loop vacuum amplitude

〈 1 〉annulus ≡ A5a (3.17)

is also contributing to the overall normalization factor of the partition function through its

“primed” part. We will give its explicit expression in the next section, where we will also

discuss its meaning and relevance for the instanton calculus.

The last object appearing in Zk is the tree-level moduli interaction term 〈Mk 〉disk

which can be computed following the procedure explained in ref. [18] from the disk scat-

tering amplitudes among all ADHM moduli in the limit α′ → 0 (with ga fixed). The result

is [16, 22]

〈Mk 〉disk = trk

{
2
[
χ†, aµ

][
χ, aµ

]
− χ†w̄α̇wα̇χ − χw̄α̇wα̇χ†

−i

√
2

2
µ̄AǫABµBχ† + i

√
2

4
MαAǫAB

[
χ†,MB

α

]
− i

√
2

2

NF∑

f=1

µ̄′f µ′
f χ (3.18)

+iDc

(
w̄α̇(τ c)α̇

β̇
wβ̇ + iη̄c

µν

[
aµ, aν

])
−iλα̇

A

(
µ̄Awα̇ + w̄α̇µA +

[
aµ,MαA

]
σµ

αα̇

)}
,

where we have explicitly indicated the sum over the flavor indices and understood the one

on the color indices. Notice that the moduli Dc and λα̇
A appear only linearly in the last

12We define the 1-loop β-function as β(g) = − (b1/16π2)g3.
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µ̄

φ̄

µ

Figure 1: The mixed disk representing the coupling of the adjoint scalar field φ̄ to the instanton

fermionic moduli µ̄ and µ.

two terms of (3.18) and thus act as Lagrange multipliers for the bosonic and fermionic

constraints of the ADHM construction. Notice also that 〈Mk 〉disk is indeed of O
(
g0
a

)

as anticipated above, and that it does not depend on the instanton center xµ
0 nor on its

super-partners θαA defined in (3.5). For this reason it is convenient to separate xµ
0 and θαA

from the remaining centered moduli, denoted by M̂k, and simplify the notation by setting

〈Mk 〉disk ≡ −Smod(M̂k). In this way we have

Zk =

∫
d4x0 d4θ Ẑk , (3.19)

where

Ẑk = Λ(2Na−NF )k eA
′
5a

∫
dM̂k e−Smod( cMk) (3.20)

is the centered k-instanton partition function.

3.3 Instanton induced prepotential and effective action

Let us now briefly discuss how instanton contributions to gauge field correlation functions

are computed in this string set-up.

The first step is to generalize the moduli action Smod(M̂k) to include the interactions

with gauge fields. Here for definiteness we will consider only the Coulomb branch of the

N = 2 theory, i.e. we will discuss the interactions with the adjoint scalar fields. In our

semi-classical approximation this is achieved by computing all possible disk amplitudes

with insertions of vertex operators for instanton moduli and scalar fields as well, like the

one represented in figure 1.

The disk amplitudes that involve the adjoint scalar φ (or its conjugate φ̄) and survive
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in the limit α′ → 0 give rise to the following action [16]

Smod(φ, φ̄,m;Mk) = −trk

{
2 [χ†, a′µ][χ, a′

µ
] −

(
χ†w̄α̇ − w̄α̇ φ̄

)(
wα̇χ − φwα̇

)
(3.21)

−
(
χw̄α̇ − w̄α̇ φ

)(
wα̇χ† − φ̄ wα̇

)
− i

√
2

2
µ̄AǫAB

(
µBχ† + φ̄ µB

)

+i

√
2

4
MαAǫAB [χ†,MB

α ] − i

√
2

2

NF∑

f=1

µ̄′f
(
µ′

fχ + mf µ′
)

+ Sconstr

}
,

where Sconstr denotes the ADHM constraint part (i.e. the last line of (3.18)) which is not

modified by gauge fields, and the hyper-multiplet mass has been taken into account. Notice

that φ and φ̄ do not enter into this action on equal footing. For example only φ̄, and not

φ, couples to the fermionic colored moduli µ̄A and µB. This difference has important

consequences on the holomorphic structure of the instanton correlators. Actually there are

many other non-zero disk diagrams with instanton moduli and gauge fields that survive in

the field theory limit. However, as explained in refs. [8, 18], the corresponding couplings can

be easily obtained from those appearing in the action (3.21) by means of supersymmetry

Ward identities. In the end, to get the complete expression one has simply to replace

all occurrences of the adjoint scalars φ and φ̄ with the corresponding N = 2 chiral and

anti-chiral superfields, φ̂ and φ̂. With this understanding, the action (3.21) is then the full

result on the Coulomb branch. All other string amplitudes containing more insertions of

moduli or gauge field vertices or defined on world-sheets of higher topology, either vanish

in the field theory limit or do not contribute in the semi-classical approximation being of

higher order in ga.

The second step is to perform the integration over all moduli of the action (3.21) to

obtain the k-instanton induced gauge effective action

Sk = Λ(2Na−NF )k eA
′
5a

∫
d4x0 d4θ dM̂k e−Smod(bφ,bφ,m; cMk) . (3.22)

A few comments are in order. First of all, even if Smod(φ̂, φ̂,m;M̂k) has an explicit de-

pendence on the anti-chiral superfield φ̂, the resulting effective action Sk is a holomorphic

functional of φ̂. Indeed, the φ̂ dependence disappears upon integrating over M̂k as a

consequence of the cohomology properties of the integration measure on the instanton

moduli space [48, 16, 22]. However, to fully specify the holomorphic properties of the in-

stanton induced effective action we have to consider also the contribution of the annulus

amplitude that appears in the prefactor of (3.22). In principle this term can introduce a

non-holomorphic dependence on the complex and Kähler structure moduli of the compact-

ification space. We will discuss in detail this issue in section 5 after explicitly computing

the annulus amplitude for our orbifold compactification in the next section.

It is also worth pointing out that among the centered moduli M̂k there is the singlet

part of the anti-chiral fermions λα̇A which is associated to the supersymmetries that are

preserved both by the D9 and by the E5 branes. Thus one may naively think that in-

stantonic branes cannot generate an F-term, i.e. an integral on half superspace, due to the
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presence of the anti-chiral λα̇A’s among the integration variables. Actually, this is not true

since the λα̇A’s, including its singlet part, do couple to other instanton moduli (see the last

terms in eq. (3.18)) and their integration can be explicitly performed yielding the fermionic

ADHM constraints on the moduli space. Things would be very different instead, if there

were no D9a branes, that is if we were discussing the case of the exotic instantons. In this

case, due to the different structure of the charged moduli, the singlet part of the λα̇A’s

would not couple to anything and, unless it is removed from the spectrum, for example

with an orientifold projection [30 – 32], an integral like the one in (3.22) would vanish. In

the case of ordinary gauge instantons, instead, we can write

Sk =

∫
d4x0 d4θFk(φ̂,m) , (3.23)

where the prepotential

Fk(φ̂,m) = Λ(2Na−NF )k eA
′
5a

∫
dM̂k e−Smod(bφ,bφ,m; cMk) (3.24)

is the centered instanton partition function in the presence of φ̂. The integral over M̂k

can be performed using localization techniques [57]. Choosing a low-energy profile for the

adjoint superfield of the form

φ̂uv = φ̂u δuv (3.25)

where u, v = 1, . . . , Na and
∑

u φ̂u = 0, so that in the effective theory the gauge group

SU(Na) is generically broken to U(1)Na−1, the prepotential for k = 1 turns out to be

F1(φ̂,m) = Λ2Na−NF eA
′
5a

Na∑

u=1

[
∏

v 6=u

1

(φ̂v − φ̂u)2

NF∏

f=1

(φ̂u + mf )

]
. (3.26)

Similar closed form expressions can be obtained also for higher values of k (see e.g. ref. [16]).

However, for our future considerations the only relevant feature is that the prepotential

Fk(φ̂,m) is a homogeneous function of its variables, and specifically

Fk(ξ φ̂, ξ m) = ξ2−(2Na−NF )k Fk(φ̂,m) (3.27)

as one can check from the definition (3.24).

It is also convenient to write the effective action Sk in terms of (abelian) N = 1

superfields, by decomposing the N = 2 superfield φ̂ into its N = 1 components φ and Wα.

Then we have

Sk = Λ(2Na−NF )k eA
′
5a

{∫
d4x0 d2θ

[
1

2g2
a

τuv(φ,m)W α
u Wαv

]

+

∫
d4x0 d2θ d2θ̄

[
1

g2
a

φ̄uΦD
u (φ,m)

]}
,

(3.28)

where the functions τ and ΦD are defined by

g2
a

(
∂2Fk

∂φ̂u∂φ̂v

)

bφ=φ

= Λ(2Na−NF )k eA
′
5a τuv(φ,m) (3.29)
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and

g2
a

(
∂Fk

∂φ̂u

)

bφ=φ

= Λ(2Na−NF )k eA
′
5a ΦD

u (φ,m) . (3.30)

All these expressions are written in terms of the canonically normalized fields, but using

the homogeneous property (3.27) of the prepotential and the rescalings (2.21) and (2.47),

it is straightforward to translate the above result in the supergravity basis, getting

Sk = Λ(2Na−NF )k eA
′
5a (ga

√
KΦ)(NF −2Na)k

{ ∫
d4x0 d2θ

[
1

2g2
a

τuv(Φ,M)W α
u Wαv

]

+

∫
d4x0 d2θ d2θ̄

[
KΦ Φ̄uΦD

u (Φ,M)

]}
. (3.31)

In the following two sections we will carefully analyze the contribution of the annulus

amplitude to the prefactor of the effective action Sk and discuss its relevance for the

holomorphicity properties of the final expression.

4. The rôle of annulus amplitudes

We now consider in detail the amplitude A5a whose “primed” part appears in the prefac-

tor of the non-perturbative effective action. This annulus amplitude represents the 1-loop

vacuum energy due to the open strings with at least one end point on the wrapped instan-

tonic branes. Because of supersymmetry, the annulus amplitude associated to the E5a/E5a

strings identically vanishes, so that A5a receives contributions only from mixed annuli with

one boundary on the E5a’s and the other on the D9 branes. These mixed amplitudes de-

scribe the 1-loop contributions of the charged instantonic open strings (i.e. the E5a/D9a

and D9a/E5a strings) and of the flavored instantonic open strings (i.e. the E5a/D9b and

D9b/E5a strings). Their explicit expressions will be determined in section 4.2, but before

doing this we present in the next subsection a general argument that explains their meaning

and their relation with the running gauge coupling constant.

4.1 The mixed annuli and the running gauge coupling constant

Let us consider the gauge kinetic term at tree level

S =
1

g2

∫
d4x Tr

{
1

2
F 2

µν

}
. (4.1)

If we take a constant magnetic field whose only non-zero component is F23 = fT where T

is a specific generator of the gauge group, then the action (4.1) simply becomes

S(f) =
V4 f2

2 g2
, (4.2)

where V4 is the (regularized) volume of space-time. On the other hand, if we consider an

instanton configuration with charge k, then the classical action (4.1) is

Sinst =
8π2k

g2
. (4.3)
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f f

9a

f

Figure 2: The amplitude D9a
(f): a disk

whose boundary lies on the D9a branes,

with the insertion of the gauge field at the

quadratic order.

5a

Figure 3: The amplitude D5a
: a disk whose

boundary lies on k wrapped E5a branes.

From these formulas it is immediate to realize that

Sinst

8π2k
=

S(f)′′

V4
, (4.4)

where ′′ means second derivative with respect to f . Such a relation simply expresses the

equality of the gauge coupling constant computed in two different backgrounds.

In the case of supersymmetric theories the same relation (4.4) holds also at the quantum

level, after taking into account the 1-loop corrections. In fact, in the constant f background

the action (4.2) gets replaced by

S(f) + S1−loop(f) =
V4 f2

2 g2(µ)
, (4.5)

where g(µ) is the running coupling constant at scale µ, i.e.

1

g2(µ)
=

1

g2
+

b1

16π2
log

µ2

Λ2
UV

(4.6)

with ΛUV being the ultra-violet cutoff and b1 the 1-loop coefficient of the β-function. Sim-

ilarly, if we consider 1-loop fluctuations around the instanton background, the action (4.3)

is simply replaced by

Sinst + S1−loop
inst =

8π2k

g2(µ)
. (4.7)

Indeed, in a supersymmetric theory the 1-loop determinants of the non-zero-modes fluc-

tuations around the instanton cancel out [59] and the only effect is the renormalization

of the gauge coupling constant. Comparing (4.5) and (4.7) we easily see that the same

relation (4.4) holds also for the 1-loop corrected actions.

We now show how to rephrase the previous arguments in string theory. As explained

in section 2, to obtain S(f) at tree-level we can take a stack of D9a branes wrapped on a

six-torus and compute the DBI action (2.15) in a constant background gauge field, choosing

as before F23 = fT and then expanding it to quadratic order in f . The result is precisely

eq. (4.2) with the coupling constant ga given in (2.51). This is equivalent to compute a

tree-level amplitude D9a(f) described by a disk with two insertions of vertex operators
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f f

9a

Figure 4: The amplitudes A9a;9a
(f) or

A9a;9b
(f) correspond to annuli where one

boundary lies on the D9a branes and carries

two insertions of f , while the other boundary

lies, respectively, on a D9a or a D9b brane.

5a

Figure 5: The amplitudes A5a;9a
or A5a;9b

correspond to annuli where one boundary lies

on the E5a branes, while the other boundary

lies, respectively, on a D9a or a D9b brane.

for f along its boundary which lies on the D9a branes (see figure 2). More precisely, in

Euclidean signature such amplitude is minus the action S(f), namely

D9a(f) = −V4 f2

2 g2
a

. (4.8)

On the other hand, in our string model the classical instanton action Sinst is obtained

from the vacuum amplitude D5a on a disk whose boundary lies on k wrapped E5a branes

as we already explained in eq. (3.15), graphically represented in figure 3, which we rewrite

here for convenience:

D5a = −8π2k

g2
a

. (4.9)

Thus, from (4.8) and (4.9) we straightforwardly obtain a relation between the vacuum

disk amplitude with E5a boundary conditions and the 2-point function on a disk with D9a

boundary conditions, namely
D5a

8π2k
=

D9a(f)′′

V4
(4.10)

in strict analogy with the field theory result (4.4).

The same kind of relation holds also for 1-loop amplitudes. In fact, in the constant

gauge field background the 1-loop correction to the classical action is obtained by computing

the vacuum amplitude on an annulus13 with one boundary on the brane with f and the

second boundary on the other branes [58, 52], and then expanding the result to second order

in f . This is equivalent to compute the 2-point function A9a;9a(f) represented in figure 4

where the loop is spanned by the D9a/D9a strings. If also flavor branes are present, we

should consider also the annulus amplitude A9a;9b
(f) with D9a/D9b and D9b/D9a strings

circulating in the loop. These open string amplitudes exhibit both UV and IR divergences.

The UV divergences, corresponding to IR divergences in the dual closed string channel,

cancel in consistent tadpole-free models; even if in this paper we take only a local point

of view, we assume that globally the closed string tadpoles are absent so that we can

13In orientifold models also the Möbius strip has to be considered.
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ignore the UV divergences. On the other hand, introducing a cutoff µ to regulate the IR

divergences, the above annulus amplitudes take the following form [49, 52]

A9a(f) ≡ A9a;9a(f) + A9a;9b
(f) = − V4 f2

2

(
b1

16π2
log(α′µ2) + ∆a

)
. (4.11)

The logarithmic term accounts for the massless open string states circulating in the loop

and is thus proportional to the coefficient b1 of the β-function. The finite term ∆a orig-

inates from the integration over massive states and represents the threshold corrections.

In principle, these are due to excited string states and/or to Kaluza-Klein modes arising

from the compactification of the six extra dimensions. In N = 2 models, however, only the

Kaluza-Klein partners of the massless string states do contribute while the excited string

states cancel each other [58, 52]. Notice also that in (4.11) the rôle of the UV cutoff is

played naturally by the string length.

Let us now consider the instanton background. As we mentioned above, the 1-loop

amplitudes in this case correspond to mixed annulus diagrams with one boundary on the

instantonic E5a branes and the other boundary on the color D9a branes or on the flavor

D9b branes. These amplitudes, denoted A5a;9a and A5a;9b
respectively, are represented in

figure 5 and will be explicitly computed in the following subsection. However, even before

computing them, we can understand their meaning using the relation (4.10) which allows

to trade the boundary on the E5a for a boundary on the D9a’s with a constant field f .

Thus, in a supersymmetric model the total annulus amplitude A5a must account only for

the 1-loop correction to the gauge coupling constant in a k instanton background and, after

regulating the IR divergences, we expect to find

A5a ≡ A5a;9a + A5a;9b
= − 8π2k

(
b1

16π2
log(α′µ2) + ∆a

)
. (4.12)

Notice that in this context the β-function coefficient b1 arises from the counting (with

appropriate sign and weight) of the bosonic and fermionic ground states of mixed open

strings with one end point on the E5a branes, i.e. from the charged and flavored instanton

moduli that we listed in section 3.1. We will elaborate more on this point in the following

subsection after the explicit computation of the mixed annulus amplitudes.

From (4.11) and (4.12) it immediately follows that

A5a

8π2k
=

A9a(f)′′

V4
, (4.13)

which is the natural generalization of (4.10) at 1-loop. The relation (4.13) between the

annulus with a boundary on the instantonic brane and the annulus with a constant gauge

field f , which has been noticed in refs. [26, 27], is the strict analogue of the field theory

relation (4.4) and it simply expresses the equality of the (running) gauge coupling constant

computed in two different backgrounds. From our arguments it also follows that in super-

symmetric models the annulus amplitudes with wrapped Euclidean branes and no moduli

insertions, contrarily to some claims in the literature, seem not to be related to the 1-loop

determinants of the non-zero mode fluctuations around the instanton background, which

in fact are known to exactly cancel out because of supersymmetry [59].
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4.2 The explicit form of the annulus amplitude A5a

The annulus amplitude A5a is the 1-loop free energy of the open strings suspended between

the E5a branes and the D9 branes and, as indicated in (4.12), consists of a contribution from

the charged instanton sector, A5a;9a , and a contribution from the flavored instanton sector,

A5a;9b
. In turn each of these individual contributions is a sum of two terms corresponding

to the two possible orientations of the open strings, e.g.

A5a;9a ≡ A(9a/5a) + A(5a/9a) , (4.14)

and similarly for the flavored strings. Let us now give some details on these amplitudes,

starting from the charged sector.

The charged instanton sector. For a given open string orientation, the annulus am-

plitude in the charged sector has the following schematic form

A(9a/5a) =

∫ ∞

0

dτ

2τ

[
Tr NS

(
P

(9a/5a)
GSO Porb qL0

)
− Tr R

(
P

(9a/5a)
GSO Porb qL0

) ]
, (4.15)

where

P
(9a/5a)
GSO =

1 + (−1)F

2
(4.16)

is the GSO projector, Porb is the orbifold projector (see eq. (2.11)) and q = exp(−2πτ). The

amplitude A(5a/9a) corresponding to open strings with opposite orientation is analogous

to (4.15), but we must consider the possibility that the GSO projection P
(5a/9a)
GSO to be

employed in this case may be different from the one in (4.16). We will argue that this is

indeed the case in the R sector.

The traces in (4.15) are taken over the states in the CFT of the open strings with

D9a/E5a boundary conditions and over the Chan-Paton indices as well. The CFT contains

various components: the string fields Xµ and ψµ in the space-time directions, those along

the orbifold (T (1)
2 × T (2)

2 )/Z2, those along T (3)
2 and the ghost/superghost system. Let us

now discuss briefly the contributions of these various components.

The fields Xµ and ψµ in the space-time directions have Neumann-Dirichlet conditions,

as discussed in section 3, and hence are twisted by 1/2; in particular, their contribution to

the trace in the NS(−1)F structure vanishes because of the fermionic zero-modes.

Moving to the internal directions, all fields Zi and Ψi have Neumann-Neumann bound-

ary conditions and thus are untwisted, but for i = 1, 2 they are reflected by the Z2 action

so that they yield different non-zero mode contributions depending on whether the orbifold

generator h is inserted or not in the trace. On the other hand, the fields Z3 and Ψ3 are not

acted upon by the orbifold and their non-zero mode contributions cancel exactly against

those from the ghost/superghost system. Concerning the zero-modes, the trace over the

discretized momenta of the bosonic fields Zi gives a contribution of the form Y(1)Y(2)Y(3)

where

Y(i) ≡
∑

(r1,r2)∈Z2

q

rp

n
(i)
a

Gpq

(i)

rq

n
(i)
a =

∑

(r1,r2)∈Z2

q

T
(i)
2

U
(i)
2

|r1U(i)−r2|
2

|n
(i)
a T (i)−m

(i)
a |2 =

∑

(r1,r2)∈Z2

q

|r1U(i)−r2|
2

U
(i)
2

T
(i)
2

|ℓ
(i)
a |2 . (4.17)
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In this expression Gpq
(i) is the inverse open string metric on the i-th torus14 and in the last

step we have used the definition (2.52). Notice however that when h is inserted in the

trace, only the zero-momentum states along the first two tori survive and thus in this case

the bosonic zero-mode contribution reduces to Y(3).

Finally, let us consider the fermionic zero modes of the Ψi fields in the R sector. There

are eight zero modes corresponding to the following states:

|∆SA〉 ≡
{
|∆ S−++〉 , |∆ S+−+〉 , |∆ S++−〉 , |∆ S−−−〉

}
,

|∆SA〉 ≡
{
|∆ S+−−〉 , |∆ S−+−〉 , |∆ S−−+〉 , |∆ S+++〉

}
,

(4.18)

where SA and SA are the spin fields in the six-dimensional internal space. The action of

(−1)F on these states is defined to be

(−1)F |∆SA〉 = + |∆SA〉 , (−1)F |∆SA〉 = − |∆SA〉 , (4.19)

while the orbifold action is given in (2.10). Thus the GSO projection (4.16) selects the

states |∆SA〉 that are associated to four charged fermionic moduli µA, of which only two

are h-invariant and appear in the physical spectrum of the D9a/E5a strings, as described

in section 3.1. With this information it is possible to evaluate in a straightforward manner

the contribution of these fermionic zero-modes to the trace in the 1-loop amplitude. In

the odd spin structure, because of the insertion of (−1)F , this trace vanishes but simulta-

neously the superghost zero-modes give a divergent contribution, which makes the entire

expression ill-defined. However, as discussed in ref. [60], there exists a suitable regulariza-

tion procedure for both contributions which makes their product well-defined and actually

finite. In particular, it turns out (see for example the discussion after eq. (B.11) of ref. [61])

that the trace over the fermionic zero-modes vanishes when we insert (−1)F or h, while it

equals 8/2 = 4 when there is no insertion or the insertion of (−1)F h.

Altogether, collecting all the previous information, we can obtain the explicit expres-

sion for the amplitude A(9a/5a). In the NS spin structure we find

A(9a/5a)NS ≡ 1

2

∫ ∞

0

dτ

2τ
Tr NS

(
Porb qL0

)

=
Nak

2

∫ ∞

0

dτ

2τ

[
1

2

(
θ2(0)

2 θ3(0)
2

θ4(0)2 θ′1(0)
2
Y(1)Y(2)Y(3) + 4Y(3)

)]
,

(4.20)

where the θa’s are the Jacobi θ-functions (we follow the conventions of appendix A of

ref. [52]). The second term in (4.20) contains the insertion of h, upon which the non-zero

modes contributions along the orbifold and the space-time directions cancel each other.

The factor of 1/2 inside the square bracket comes from the orbifold projector. As argued

above, the NS(−1)F structure vanishes identically. In the R sector, taking into account

14The open string is defined as G(i) =
`

G(i) + B(i) − 2πα′F(i)

´

G−1
(i)

`

G(i) − B(i) + 2πα′F(i)

´

.
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the minus sign due to spin-statistics, we get

A(9a/5a)R ≡ − 1

2

∫ ∞

0

dτ

2τ
Tr R

(
Porb qL0

)

= − Nak

2

∫ ∞

0

dτ

2τ

[
1

2

(
θ3(0)

2 θ2(0)
2

θ4(0)2 θ′1(0)
2
Y(1)Y(2)Y(3)

)]
,

(4.21)

which comes entirely from the term with no insertion of h. Finally, the odd spin structure

R(−1)F receives a contribution only when h is inserted, and reads

A(9a/5a)R(−1)F ≡ − 1

2

∫ ∞

0

dτ

2τ
Tr R

(
(−1)F Porb qL0

)

= − Nak

2

∫ ∞

0

dτ

2τ

[ 1

2

(
4Y(3)

)]
.

(4.22)

Then the full GSO-projected amplitude for the D9a/E5a strings is

A(9a/5a) = A(9a/5a)NS + A(9a/5a)R + A(9a/5a)R(−1)F = 0 , (4.23)

where we have inserted the results (4.20), (4.21) and (4.22).

However, we have to consider also the amplitude A(5a/9a) which is the 1-loop vacuum

energy of open strings with the opposite orientation. The only subtlety occurs in the R

sector. In this case we have again eight fermionic ground states, namely |∆̄SA〉 and |∆̄SA〉
which differ from the states (4.18) only because they contain the anti-twist ∆̄ in place

of ∆. The (−1)F parity on these states must be defined consistently with the previous

definition (4.19). To do so, let us observe that

〈 ∆̄SA |∆SB〉 = δA
B . (4.24)

This pairing, together with (4.19), implies the following parity assignments

(−1)F |∆̄SA〉 = − |∆̄SA〉 , (−1)F |∆̄SA〉 = + |∆̄SA〉 . (4.25)

As discussed after eq. (3.7), the physical spectrum of the 5a/9a strings contains the moduli

µ̄A with the same chirality as the µA. Thus, the GSO projection must select the corre-

sponding states, namely |∆̄SA〉 which are odd under (−1)F . Therefore, in the R sector of

the 5a/9a strings we must take

P
(5a/9a)
GSO =

1 − (−1)F

2
. (4.26)

as opposed to (4.16). The full GSO-projected amplitude is then

A(5a/9a) = A(5a/9a)NS + A(5a/9a)R −A(5a/9a)R(−1)F (4.27)

with a crucial minus sign in the odd spin structure as compared to (4.23). The individual

terms in this expression can be computed as explained above and turn out to be equal

to the corresponding ones for the other orientation, given in eqs. (4.20), (4.21) and (4.22)
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respectively. Now, however, due to the different sign in the R(−1)F sector, the amplitude

A(5a/9a) is not zero. The fact that the annulus amplitude is different for the two open

string orientations when the odd spin structure is non zero should not come as a surprise; in

fact the same thing has been noticed in other systems with similar features, most notably

in the D0/D8 brane systems or their T-duals [60].

From the above analysis we conclude that the total amplitude (4.14) is

A5a;9a = A(5a/9a) = 2Nak

∫ ∞

0

dτ

2τ
Y(3) . (4.28)

In the end only the zero-modes contribute to this annulus amplitude: they correspond to

the charged instanton moduli listed in section 3.1, and their Kaluza-Klein partners on the

torus T (3)
2 that together reconstruct the sum in Y(3).

The flavored instanton sector. Let us now consider the annulus amplitude produced

by the instantonic strings stretching between the flavor D9b branes and the E5a’s, namely

A5a;9b
≡ A(9b/5a) + A(5a/9b) . (4.29)

The difference with the charged case considered above resides entirely in the CFT of the

string fields Zi and Ψi, with i = 1, 2, along the orbifold. These fields are all twisted by

the same angle ν
(1)
ba = ν

(2)
ba , which in the following will be simply denoted by ν, and none

of them has zero-modes. We have however to include the factor Iba, defined in eq. (2.60),

related to the number of Landau levels for these magnetized directions. Another difference

is that the fractional branes of type a and b belong to different irreducible representations

of the Z2 orbifold group, so that h acts on the Chan-Paton factors of the open strings as

a minus sign, and the twisted NS ground state is h-even while the twisted R ground state

is h-odd as explained in section 2.2.

Taking all these facts into account, we can write the various contributions to the

annulus amplitude. Let us start with the D9b/E5a orientation. In the NS spin structure

we have

A(9b/5a)NS ≡ 1

2

∫ ∞

0

dτ

2τ
Tr NS

(
Porb qL0

)

= − NbIbak

2

∫ ∞

0

dτ

2τ

[
1

2

(
θ2(0)

2 θ3(iντ)2

θ4(0)2 θ1(iντ)2
+

θ2(0)
2 θ4(iντ)2

θ4(0)2 θ2(iντ)2

)
Y(3)

]
.

(4.30)

The NS(−1)F amplitude vanishes because of the space-time fermion zero modes, as before.

In the R sector we find instead

A(9b/5a)R ≡ − 1

2

∫ ∞

0

dτ

2τ
Tr R

(
Porb qL0

)

=
NbIbak

2

∫ ∞

0

dτ

2τ

[
1

2

(
θ3(0)

2 θ2(iντ)2

θ4(0)2 θ1(iντ)2
+

θ3(0)
2 θ1(iντ)2

θ4(0)2 θ2(iντ)2

)
Y(3)

]
.

(4.31)

Finally, the R(−1)F amplitude, to which both the term without h and the one with h

contribute, is

A(9b/5a)R(−1)F ≡ − 1

2

∫ ∞

0

dτ

2τ
Tr R

(
(−1)F Porb qL0

)
=

NbIbak

2

∫ ∞

0

dτ

2τ
Y(3) . (4.32)
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Using the Riemann identities

θ2(0)
2 θ3(iντ)2 − θ3(0)

2 θ2(iντ)2 = θ4(0)
2 θ1(iντ)2 ,

θ2(0)
2 θ4(iντ)2 − θ3(0)

2 θ1(iντ)2 = θ4(0)
2 θ2(iντ)2 ,

(4.33)

one can easily see that the GSO projected amplitude vanishes:

A(9b/5a) = A(9b/5a)NS + A(9b/5a)R + A(9b/5a)R(−1)F = 0 . (4.34)

Let us now consider the amplitude A(5a/9b) corresponding to the other orientation.

Just as in the charged case previously discussed, we must be careful with the GSO pro-

jection in the R sector. The same argument presented above implies that P
(5a/9b)
GSO and

P
(9b/5a)
GSO must be defined in a different way. Indeed, the physical states of the two types of

strings are described by the vertex operators (3.8) and (3.9) which both contain the same

spin field S− in the last complex direction. Thus, if the µ′’s are even under (−1)F , the

µ̄′’s, which do not contain the conjugate spin field, must be odd under (−1)F . Then, the

complete GSO projected amplitude for the E5a/D9b strings reads

A(5a/9b) = A(5a/9b)NS + A(5a/9b)R −A(5a/9b)R(−1)F . (4.35)

The individual contributions can be computed explicitly as before; one simply has to replace

ν → (1 − ν), which however has no consequences because of the properties of the θ-

functions, and also change the prefactor to NbIab, which is also harmless since Iab = Iba,

see eq. (2.60). Thus, the various terms in (4.35) are equal to the corresponding ones for

the other orientation, given respectively in eqs. (4.30), (4.31) and (4.32). Now, however,

due to the minus sign in the odd spin structure, the amplitude A(5a/9b) is not vanishing.

We thus conclude that the total instantonic amplitude in the flavored sector is

A5a;9b
= A(5a/9b) = −NF k

∫ ∞

0

dτ

2τ
Y(3) , (4.36)

where NF is the number of flavors defined in (2.59).

The total amplitude. Summing the contributions (4.28) and (4.36) of the charged and

flavor sectors, we finally have

A5a = (2Na − NF ) ka

∫ ∞

0

dτ

2τ
Y(3) . (4.37)

This amplitude is proportional to the 1-loop coefficient b1 of the β-function of our N = 2

theory, i.e. b1 = 2Na − NF . It is interesting to notice that in this context this coefficient

arises from the counting of the charged and flavored zero-modes of the instantonic strings.

Let us consider in more detail this contribution, tracing back the NS and R terms and

keeping them distinct. We have

∫ ∞

0

dτ

2τ

[
(4Na − 2NF )k − (2Na − NF )k

]
=

(
nbos −

1

2
nferm

)∫ ∞

0

dτ

2τ
, (4.38)
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where

nbos = nferm = (4Na − 2NF )k (4.39)

is the number of bosonic and fermionic moduli in the charged and flavored sectors, i.e.

the number of w’s and w̄’s and the number of µ’s, µ̄’s, µ′’s and µ̄′’s. Notice also that the

stringy origin of the factor of 1/2 in (4.38) is in the (regularized) trace over the superghost

zero-modes of the R sector [60].

To obtain the explicit expression of the annulus amplitude A5a we have to compute

the integral

I ≡
∫ ∞

0

dτ

τ
Y(3) =

∫ ∞

0

dτ

τ

∑

(r1,r2)∈Z2

e
−2πτ

|r1U(3)−r2|
2

U
(3)
2

T
(3)
2

|ℓ
(3)
a |2 . (4.40)

The detailed calculation is performed in appendix A; here we simply recall that this integral

is divergent both in the UV limit τ → 0, and in the IR limit τ → ∞. The UV divergence

can be reinterpreted as an IR divergence in the dual closed string channel after Poisson

resummation. We assume that such a divergence cancels in fully consistent models which

satisfy the tadpole cancellation condition [49]. Subtracting this divergence, the integral I

can be evaluated by introducing a mass parameter m which regularizes the IR singularity

in the open string channel, and the final result is (see eq. (A.10))

I = − log
(
α′m2

)
− log |η(U (3))|4 − log

(
U

(3)
2 T

(3)
2 |ℓ(3)

a |2
)

, (4.41)

where η is the Dedekind function. Since only one of the two orientations contributes to

A5a , it is possible, following refs. [58, 52], to take a complex IR cutoff15

m = µ eiϕ , (4.42)

so that the instantonic annulus amplitude becomes

A5a = −b1 k

(
1

2
log(α′µ2) + iϕ + log |η(U (3))|2 +

1

2
log

(
U

(3)
2 T

(3)
2 |ℓ(3)

a |2
))

(4.43)

and has the expected form (4.12).

5. The holomorphic life of the D-brane instantons

In this section we combine the result we have just obtained for the annulus amplitude with

what we have discussed in section 3.3 in order to get the instanton induced corrections to

the low-energy effective action of our N = 2 theory.

To this aim, let us first recall that what enters in the instanton calculus is not the

complete annulus amplitude A5a , but rather its “primed” part A′
5a

. This is obtained

from A5a by subtracting the logarithmically divergent contribution of the zero-modes to

avoid double counting since the integral over them is separately performed in an explicit

15Notice that in general one should regulate, for consistency, the contributions of the two orientations

with complex conjugate cutoffs [52].
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way [24, 27]. However, as remarked already in refs. [39, 40], the UV cutoff that one uses in

the field theory analysis of a string model is the four-dimensional Planck mass MP , which

is related to α′ in the following way:

M2
P =

1

α′
e−φ10 s2 , (5.1)

where φ10 is the ten-dimensional dilaton. This means that what we have to subtract from

A5a in order to remove the field theory zero modes contribution is not exactly the log(α′µ2)

term. Rather, we have to write

A5a = −8π2k

(
b1

16π2
log

µ2

M2
P

+ ∆̃a

)
(5.2)

with

∆̃a =
b1

8π2

(
iϕ + log |η(U (3))|2 +

1

2
log(e−φ10 s2) +

1

2
log(U

(3)
2 T

(3)
2 |ℓ(3)

a |2)
)

. (5.3)

Now the logarithmic term in (5.2) correctly accounts for field theory zero-mode contribution

and the remaining finite term is the “primed” part of the annulus contribution that appears

in the instantonic amplitudes, namely

A′
5a

= −8π2k ∆̃a . (5.4)

To discuss the holomorphic properties of the k-instanton induced effective action we

have to first rewrite the above expression in terms of the supergravity variables (2.5),

getting

A′
5a

= − b1 k

(
iϕ + log |η(u(3))|2 +

1

2
log(s2) + log(u

(3)
2 t

(3)
2 |ℓ(3)

a |2)
)

= − (2Na − NF ) k

(
iϕ + log |η(u(3))|2 − 1

2
log(g2

a) − 1

2
log KΦ

)
,

(5.5)

where in the second line we have made use of eqs. (2.51) and (2.20). Thus, the part of the

prefactor in the instanton amplitudes that comes from the annulus diagrams is

eA
′
5a =

(
|η(u(3))|2 ei ϕ

)−(2Na−NF )k
(ga

√
KΦ)(2Na−NF )k . (5.6)

This is one of the main results in this paper. It shows that the non holomorphic terms

produced by the instanton annulus amplitudes nicely combine in the Kähler metric of the

adjoint fields (see also ref. [33]) and precisely cancel the prefactor (ga

√
KΦ)(NF −2Na)k in

the non-perturbative effective action (3.31) which is produced by the rescaling from the

string basis to the supergravity basis.

Furthermore, by tuning the (arbitrary) phase ϕ of the IR cutoff to be arg
(
η(u(3))2

)
,

we can promote the harmonic term |η(u(3))|2 to a purely holomorphic one η(u(3))2. Thus,

the k-instanton induced effective action (3.31) acquires its final form

Sk = Λ′(2Na−NF )k
{∫

d4x0 d2θ

[
1

2g2
a

τuv(Φ,M)W α
u Wαv

]

+

∫
d4x0 d2θ d2θ̄

[
KΦ Φ̄uΦD

u (Φ,M)

]}
, (5.7)
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where we have performed the rescaling

Λ′ = Λ η(u(3))−2 (5.8)

which is equivalent to the following holomorphic redefinition of the Wilsonian Yang-Mills

coupling constant:

τYM ≡
(

θYM

2π
+ i

4π2

g2
a

)
→ τYM + i

(2Na − NF )

2π
log(η(u(3)))2 . (5.9)

The effective action (5.7) has the holomorphic structure required by supersymmetry in

Wilsonian actions [39, 40]. This result is also a confirmation of the Kähler metrics (2.55)

and (2.56) for the adjoint and flavored fields.

6. Conclusions

The detailed analysis of the previous sections shows that the instantonic annulus amplitudes

have the right structure to reproduce the appropriate Kähler metric dependence in such a

way that the instanton induced effective action becomes purely holomorphic in the variables

of the supergravity basis. To further elaborate on this point, it is instructive to consider

separately the charged and flavored 1-loop amplitudes A5a;9a and A5a;9b
, given respectively

in eqs. (4.28) and (4.36), and rewrite them in terms of the Kähler metrics KΦ and KQ of the

adjoint and fundamental chiral multiplets. Using (2.55) and (2.56), as well as the coupling

constant (2.51) and the bulk Kähler potential (2.6), we easily find

A5a;9a = −Na k

(
log

µ2

M2
P

+ log
(
η(u(3))

)4 − log(g2
a) − log KΦ

)
, (6.1)

A5a;9b
=

NF k

2

(
log

µ2

M2
P

+ log
(
η(u(3))

)4 − K + 2 log KQ

)
, (6.2)

where the phase of the complex IR cutoff has been chosen as discussed in the previous

section. These two formulas are particular cases of the expression of the one-loop running

coupling constant g2(µ) given in [39 – 41]. This expression can be written in terms of the

corresponding one-loop amplitude A, according to the discussion in section 4.1,16 as follows

A = k

[
− b

2
log

µ2

M2
P

+ f +
c

2
K − T (G) log

(
1

g2

)
+

∑

r

nr T (r) log Kr

]
, (6.3)

where f is a holomorphic quantity, K is the bulk Kähler potential and

T (r) δAB = Tr r

(
TATB

)
, T (G) = T (adj) ,

b = 3T (G) −
∑

r

nr T (r) , c = T (G) −
∑

r

nr T (r) ,
(6.4)

with TA being the generators of the gauge group G and nr the number of N = 1 chi-

ral multiplets in representation r, having Kähler metric Kr. In fact, the charged annulus

16One has to use the fact that that 1/g2 = −Re(A)/8π2k.
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amplitude (6.1) corresponds to the case of the adjoint matter (b = 2Na, c = 0) while the

flavored amplitude (6.2) corresponds to 2NF chiral multiplets in the fundamental repre-

sentation (b = c = −NF ). In both cases, f is proportional to log(η(u(3))2 and represents a

finite holomorphic renormalization of the Wilsonian Yang-Mills coupling.

Even if we have considered models with N = 2 supersymmetry, throughout this paper

we have mostly used a N = 1 notation, and also eqs. (6.1) - (6.3) have been written in this

language. However, it is not difficult to convert them to a full-fledged N = 2 notation. To

this aim, let us observe that in (6.2) the dependence on t
(1)
2 , t

(2)
2 , u

(1)
2 and u

(2)
2 actually drops

out, so that we can express the result in terms of the N = 2 bulk Kähler potential [55]

K̃ = K − 2 log KQ = − log(s2) − log(t
(3)
2 ) − log(u

(3)
2 ) (6.5)

without introducing a Kähler metric for the hyper-multiplets. In this way we see that both

eqs. (6.1) and (6.2) are two particular cases of the formula [39 – 41, 47]

A = k

[
− b

2
log

µ2

M2
P

+ f − T (G) log

(
1

g2

)
+ T (G) log (KΦ) −

∑

r

Nr T (r) K̃

]
, (6.6)

where b is again the coefficient of the β-function and Nr is the number of N = 2 hyper-

multiplets in the representation r. Notice also that in terms of the Kähler potential (6.5),

eq. (2.44) can be written as

e
eK/2 = ga

√
KΦ , (6.7)

while eq. (6.6) becomes

A = k

[
f +

b

2

(
log

M2
P

µ2
+ K̃

)]
, (6.8)

which are in the appropriate form required by N = 2 supergravity [47].

We conclude by stressing that the general formula (6.3) allows to obtain the explicit

expression of the Kähler metrics Kr starting from an instantonic annulus amplitude A
in a gauge theory with a specified matter content. This can be particularly useful in

the case of N = 1 models in which the Kähler metric of flavored chiral multiplets is not

known a priori since they correspond to string excitations of twisted sectors. Applying

the formula (6.3) to N = 1 theories and using it to check the holomorphicity of the non-

perturbative superpotential terms induced by instantons will therefore provide a way to

deduce the Kähler metric for the twisted matter in N = 1 theories. This will be the subject

of a separate publication [62].
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A. Calculation of the integral I

In this appendix we give some details on the explicit calculation of the integral

I ≡
∫ ∞

0

dτ

τ

∑

(r1, r2)∈Z2

e
− 2πτ

|r1U(3) − r2|
2

U
(3)
2

T
(3)
2

|ℓ
(3)
a |2 . (A.1)

Regularization with a cut-off. In the IR region (τ → ∞) the integral (A.1) has a log-

arithmic divergence due to the massless states and a regularization procedure is necessary

to cure the IR problem. Here we use the regularization procedure introduced in ref. [63]

and insert in the integrand the regulator

R(τ) = 1 − e−
π

α′ m2 τ , (A.2)

where m is a (complex) IR cut-off. In the following we will briefly discuss another regular-

ization scheme with Wilson lines.

Eq. (A.1) is divergent also in the UV-region τ → 0. This divergence was not present in

ref. [63] and in order to cure it we use the Poisson resummation formula to rewrite eq. (A.1)

in the form:

I ≡ |ℓ(3)
a |2 T

(3)
2

2

∫ ∞

0

dτ

τ2

∑

(s1, s2)∈Z2−{(0,0)}

e
− π

2τ

|ℓ
(3)
a |2T (3)

U
(3)
2

|U (3)s1 + s2|2 (
1 − e−

π

α′ m2 τ

)
, (A.3)

where we have neglected the divergent contribution due to the term s1 = s2 = 0, because

it is absent in a consistent model free of tadpoles [49].

We can now perform the integral getting:

I =
U

(3)
2

π

∑

(s1, s2)∈Z2−{(0,0)}

[
1

|U (3)s1 + s2|2
− 1

|U (3)s1 + s2|2 + U
(3)
2 N

]
(A.4)

with N = 2/(α′m2 T
(3)
2 |ℓ(3)

a |2). By using the identity:

∑

s2∈Z

1

(s2 + A)2 + B2
=

iπ

2B
[cot π(A + iB) − cot π(A − iB)]

= − π

B

[
e2πi u

e2πi u − 1
+

e−2πi ū

e−2πi ū − 1
− 1

]
≃ π

B
for B → +∞

(A.5)

with u = A + iB, A = U
(3)
1 s1 and B = U

(3)
2 s1 (or B =

√
(U

(3)
2 s1)2 + NU

(3)
2 ), we have:

I = −2
∑

s1>0

[
1

s1

qs1

qs1 − 1
+

1

s1

q̄s1

q̄s1 − 1

]
+

∑

s1>0


 2

s1
− 2√

s2
1 + N

U2




+
U

(3)
2

π

∑

s2∈Z−{0}

[
1

s2
2

− 1

s2
2 + NU

(3)
2

]
(A.6)
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with q = e2πi U (3)
. Expanding the geometric series, the first term gives

−2
∑

s1>0

1

s1

qs1

qs1 − 1
= 2

∑

n,s1>0

1

s1
qns1 − log(q−1/6η(U (3))2) , (A.7)

where η(U) is the Dedekind η-function. The second term can be evaluated by using the

Euler-Maclaurin formula:

2
∑

s1>0




1

s1
− 1√

s2
1 + N

U
(3)
2


 ≃ 2 log

√
N

2

√
U

(3)
2

+ 2γE . (A.8)

The last term yields:

U
(3)
2

π

∑

s2∈Z−{0}

[
1

s2
2

− 1

s2
2 + N

]
= 2

U
(3)
2

π
ζ(2) − O(m2) ≃ +

π

3
U

(3)
2 , (A.9)

where we used the particular value of Riemann zeta function ζ(2) = π2/6. Finally we can

write:

I = − log |η(U (3))|4 − log
(
U

(3)
2 T

(3)
2 |ℓ(3)

a |2
)
− log

(
α′m2

)
(A.10)

where we have redefined 2m2e−2γE → m2.

Regularization with Wilson lines. We now briefly describe the effect of introducing

Wilson lines on the torus T (3)
2 which can act as IR regulators [26] for the integral I in

eq. (A.1).

Turning on Wilson lines ξ1 and ξ2 along T (3)
2 produces a shift on the momenta so that

I becomes

K(ξ1, ξ2) ≡
∫ ∞

0

dτ

τ

∑

(r1, r2)∈Z2

e
− 2πτ

|(r1−ξ1)U(3) − (r2−ξ2)|2

U
(3)
2

T
(3)
2

|ℓ
(3)
a |2 . (A.11)

Subtracting the UV divergence after a Poisson resummation as we did before in eq. (A.3),

we have

K(ξ1, ξ2) ≡
|ℓ(3)

a |2T (3)
2

2

∫ ∞

0

dτ

τ2

∑

(s1, s2)∈Z2−{(0,0)}

e
− π

2τ

|ℓ
(3)
a |2T (3)

U
(3)
2

|U (3)s1 + s2|2 +2πi(s1ξ1+s2ξ2)

(A.12)

which can be easily integrated to give

K(ξ1, ξ2) =
U

(3)
2

π

∑

(s1, s2)∈Z2−{(0,0)}

e2πi(s1ξ1+s2ξ2)

|U (3)s1 + s2|2
. (A.13)

If ξ2 = 0 we can use eq. (A.5) and write

K(ξ1, ξ2 = 0) = −
∑

s1>0

[
1

s1

qs1(e2πi ξ1s1 + e−2πi ξ1s1)

qs1 − 1
+

1

s1

q̄s1(e2πi ξ1s1 + e−2πi ξ1s1)

q̄s1 − 1

]

+
∑

s1>0

(e2πi ξ1s1 + e−2πi ξ1s1)

s1
+

U
(3)
2

π

∑

s2∈Z−{0}

1

s2
2

(A.14)
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with q = e2πiU (3)
. Expanding the geometric series, the first term gives

−
∑

s1>0

1

s1

qs1(e2πi ξ1s1 + e−2πi ξ1s1)

qs1 − 1
= −

∑

n>0

log
(
(1 − e2πi ξ1 qn)(1 − e−2πiξ1 qn)

)
, (A.15)

and similarly for the second term with q replaced by q̄. The second line of (A.14) can be

easily seen to give

− log
(
4 sin2(πξ1)

)
+

π

3
U

(3)
2 , (A.16)

so that we can finally write

K(ξ1, ξ2 = 0) =
π

3
U

(3)
2 − log

∣∣∣2 sin(πξ1)
∞∏

n=1

(1 − e2πi ξ1 qn)(1 − qne−2πi ξ1)
∣∣∣
2

= − log

∣∣∣∣∣
θ1

(
ξ1| − iU (3)

)

η(U (3))

∣∣∣∣∣

2

. (A.17)

To find the general expression for ξ2 6= 0, it is convenient to introduce the complex variable

z = ξ1 − U (3)ξ2 such that z ≃ z + 1 ≃ z − U (3) as a consequence of the periodicity of the

Wilson lines. Then, one can show that

∂

∂z̄

∂

∂z
K(ξ1, ξ2) =

π

U
(3)
2

[
1 − δ(ξ1) δ(ξ2)

]
. (A.18)

Studying the behavior of the solution to this differential equation near z = 0 and matching

with the form (A.17) of the explicit solution already found for ξ2 = 0, one can obtain [26, 38]

K(ξ1, ξ2) = − log

∣∣∣∣∣e
−iπξ2U (3) θ1

(
z| − iU (3)

)

η(U (3))

∣∣∣∣∣

2

. (A.19)

This final result can be entirely written as the sum of a holomorphic and an anti-

holomorphic function, in agreement with the fact that in the Wilson line regularization

all excitations are massive.
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